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ABSTRACT

Mathematics curricula are frequently rich with visuals, but these visuals are often not designed for 
optimal use of students’ limited cognitive resources. The authors of this study revised the visuals in a 
mathematics lesson based on instructional design principles. The purpose of this study is to examine the 
effects of these revised visuals on students’ cognitive load, cognitive processing, learning, and interest. 
Middle-school students (N = 62) read a lesson on early algebra with original or revised visuals while 
their eye movements were recorded. Students in the low prior knowledge group had less cognitive load 
and cognitive processing with the revised lesson than the original lesson. However, the reverse was true 
for students in the middle prior knowledge group. There were no effects of the revisions on learning. 
The findings are discussed in the context of the expertise reversal effect as well as the cognitive theory 
of multimedia learning and cognitive load theory.

INTRODUCTION

Eye-tracking measures may provide important insight into the design of learning materials (i.e., in-
structional design; Hyönä, 2010; Mayer, 2010; van Gog & Scheiter, 2010). This view is based on the 
eye-mind assumption (Just & Carpenter, 1980), which states that the eye fixates on what the mind is 
processing (Just & Carpenter, 1976; Rayner, 1998). By examining what a student’s eyes fixate on, one 
can discern what that student is focusing on, and this information may be useful for understanding how 
students use instructional materials.
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One distinct benefit of eye-tracking measures is their spatial precision, which allows for understanding 
how information in different regions of a lesson is processed (e.g., Chang & Choi, 2014; She & Chen, 
2009). For this reason, eye-tracking measures are particularly valuable for understanding how different 
representations, such as visuals and text, are processed (e.g., Mason et al., 2013; Scheiter & van Gog, 
2009; Schwonke, Berthold, & Renkl, 2009). In this research, we used eye tracking to examine how 
variations in visuals affect students’ processing of a lesson.

Researchers and curriculum designers have articulated instructional design principles (also called 
evidence-based principles and cognitive principles) that specify how visuals should be integrated with 
text (Mayer & Moreno, 1999; Mayer, 2008). The broad aim of these principles is to optimize learning 
(e.g., Mayer, 2009; Sweller, Ayres, & Kalyuga, 2011). In this work, we used eye tracking to examine 
students’ processing of a lesson that was either well aligned or less well aligned with these principles.

To address this issue, we used a lesson from Connected Mathematics 2 (CMP2; Lappan, Fey, Fitzger-
ald, Friel, & Phillips, 2006), which is rich with visuals, such as pictures, diagrams, and other spatial 
representations (Clinton, Cooper, Alibali & Nathan, 2012). However, the ways visuals are used in the 
lessons and activities do not always make effective use of students’ cognitive resources. In a separate, 
large-scale study, a team of researchers has revised the visuals based on instructional design principles, 
and is testing the revised version of the CMP2 curriculum in a nation-wide randomized control trial in 
order to determine the effectiveness of the revisions on learning (Davenport, Kao, & Schneider, 2013).

Building on previous research findings on instructional design principles and eye tracking (e.g., 
Johnson & Mayer, 2012; Ozcelik, Karakus, Kursun, & Cagiltay, 2009; Ozcelik, Arslan-Ari, Cagiltay, 
2010), we conducted an eye-tracking experiment with students who read a lesson derived from the 
CMP2 curriculum with original visuals or with visuals that were revised on the basis of instructional 
design principles. The aim was to assess the effects of the revised visuals on students’ processing of 
the different representations and on their subsequent learning. Specifically, we were interested in how 
eye-tracking measures could reveal the moment-by-moment effort in working memory, referred to as 
cognitive load, as well as the amount of time spent viewing representations, referred to as the amount 
of cognitive processing (see Ozcelik et al., 2010 for a similar approach).

BACKGROUND

The instructional design principles that guided the revisions are grounded in the cognitive theory of 
multimedia learning (Mayer, 2009; Mayer & Moreno, 2003) and in cognitive load theory (e.g., Paas, 
Renkl & Sweller, 2003; Plass, Moreno, & Brünken, 2010). A central idea of both theories is that the 
structure of the cognitive system imposes limits on the processing of information presented to auditory, 
linguistic, and visual sensory processing channels that influence how learners integrate information. The 
cognitive theory of multimedia learning holds that visual and verbal information (i.e., text or speech) 
are processed in different pathways, and the theory emphasizes the need for the information in these 
two pathways to be integrated (Mayer, 2014a). In addition, the cognitive theory of multimedia learn-
ing prescribes guidance for instructional design, namely the reduction of extraneous (i.e., unnecessary) 
processing to improve learning (Mayer, 2009). In sum, implementing these theory-based principles in a 
lesson should reduce the amount of cognitive processing necessary to understand a lesson.

In contrast to the cognitive theory of multimedia learning, cognitive load theory emphasizes the dif-
ferent types of cognitive load (i.e., effort in working memory) a student may experience (Sweller et al., 
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2011). Cognitive load theory builds on the idea that inherent (i.e., biological) constraints on working 
memory limit the amount of information one can process at a given time (Chandler & Sweller, 1991). 
If a student has too much information to process or information is difficult to understand, limited work-
ing memory capacity can be overloaded, thereby impairing comprehension and diminishing learning 
(Sweller, 1994). Much of this research has shown superior problem-solving performance and learning 
with manipulations that reduce the cognitive load required to integrate information across visuals and 
text (e.g., Chandler & Sweller, 1991; Kalyuga, Chandler, & Sweller, 1999; see Mayer & Moreno, 2009; 
Pashler et al., 2007 for reviews).

Cognitive load can be intrinsic or extrinsic to the learning goal (Sweller et al., 2011). Intrinsic cog-
nitive load (this includes what used to be referred to as “germane load”; Kalyuga, 2011) consists of 
the information in working memory relevant to the task. In contrast, extrinsic cognitive load consists 
of information in working memory irrelevant to the instructional task. The general aim of instructional 
design principles is to reduce extrinsic cognitive load so that students can focus their cognitive resources 
to best manage the lesson content (Mayer & Moreno, 2003).

Instructional Design Principles

Three instructional design principles guided the revisions to the curricular materials: signaling, contigu-
ity, and coherence.

According to the signaling principle, learning is promoted by cues, such as color codes and labels 
(Mayer, 2009), to important information. Cues may promote learning both by directing students’ atten-
tion to relevant information and by connecting corresponding information across different representa-
tions (e.g., text and visuals; Berthold & Renkl, 2009; Florax & Ploetzner, 2010; Kalyuga, Chandler & 
Sweller, 1999; de Koning, Tabbers, Rikers, & Paas, 2009; for a meta-analysis see Richter, Scheiter & 
Eitel, 2016). These cues may reduce the extraneous processing and the extrinsic cognitive load needed 
to discern the importance of information or integrate corresponding information across representations 
(Lin & Lin, 2014; Mayer & Moreno, 2003). The use of signaling may increase cognitive processing of 
the visual, especially in the signaled areas of the visual (de Koning, Tabbers, Rikers, & Paas, 2010). 
However, previous eye-tracking findings have not indicated a reduction in cognitive load due to signal-
ing (de Koning et al., 2010; Ozcelik et al., 2010).

The contiguity principle states that information should be arranged such that relevant information in 
different representations is in close proximity. This reduces the cognitive load of reading and connecting 
corresponding verbal and visual information (e.g., Ginns, 2006; Renshaw, Finlay, Tyfa, & Ward, 2004). 
Labels place relevant text in close proximity to visuals, making the information in the two representa-
tions more spatially contiguous, thereby facilitating integration between the two representations (Florax 
& Ploetzner, 2010; Holsanova, Holmberg, & Holmquist, 2009; Johnson & Mayer, 2012). Previous eye-
tracking findings have indicated that integrating relevant text with visuals does not affect the amount 
of cognitive processing of the visual, but does reduce the amount of cognitive processing of the text, 
perhaps due to the reduction in extraneous processing (Johnson & Mayer, 2012). However, there has 
been limited empirical investigation of the contiguity principle on cognitive load (see Altan & Cagiltay, 
2015, for preliminary work with a small sample).

The coherence principle states that learning is fostered when interesting, but irrelevant information, 
such as decorative pictures, is removed (Harp & Mayer, 1997; Mayer, 2009; for a review, see Rey, 2012). 
This type of information has been found to distract learners and diminish comprehension, a phenomenon 
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referred to as the seductive details effect (e.g., Lehman, Schraw, McCrudden, & Hartley, 2007). Irrelevant 
visuals may interfere with learning because they increase the amount of information in the lesson (Sanchez 
& Wiley, 2006). This potential increase in extraneous cognitive processing and extrinsic cognitive load 
appears to be particularly problematic for learning from written lessons in which verbal information is 
conveyed through text (visually) compared to oral presentations in which verbal information is conveyed 
through narration (auditorily; Park, Moreno, Seufert, & Brünken, 2011). This difference in modalities 
is presumably due to irrelevant visuals overloading cognitive resources when all of the information in 
a lesson is presented visually (Park, Flowerday, & Brünken, 2015). Previous eye-tracking findings have 
indicated that irrelevant visuals in statistics lessons caused less cognitive processing of instructional 
text and visuals compared to lessons without irrelevant visuals, likely because of the extra information 
and distraction of the irrelevant visuals (Rey, 2014). Surprisingly, one study found that self-reports of 
cognitive load were lower for lessons with irrelevant visuals, despite lower comprehension scores (Park, 
Korbach, & Brünken, 2015). It is possible that the irrelevant visuals gave students the impression the 
lesson was easier than it actually was. For this reason, an eye-tracking measure of cognitive load may be 
particularly valuable (van Gog, Kester, Nievelstein, Giesbers, & Paas, 2009) for materials such as these. 
An eye-tracking measure would be collected as the lesson is being viewed and would be a more objective 
measure of the demand imposed by the lesson (e.g., Amadieu, Van Gog, Paas, Tricot, & Mariné, 2009).

In past research, the signaling, contiguity, and coherence principles have typically been examined 
in isolation (e.g., Florax & Ploetzner, 2010; Mason et al., 2013; Ozcelik et al., 2009, 2010; Scheiter 
& Eitel, 2015). However, in the revisions of the CMP curriculum, these principles were all applied in 
the following ways: (1) additional signaling was added; (2) contiguity of visuals and related text was 
increased, and (3) math-irrelevant visuals were removed. Multiple principles were applied based on a 
“less is more” approach; less extrinsic cognitive load and extraneous processing (through the removal 
of math-irrelevant visuals and increased contiguity and signaling) was expected to yield more learning 
(see Mayer, 2014b). This approach is novel and examines whether benefits to the process and products 
of learning can be maximized by applying multiple principles simultaneously.

Instructional Design Principles Can Interact with Prior Knowledge

Generally speaking, the cognitive load and cognitive processing involved when learning from lessons 
with text and visuals varies with both the design of the material (as previously discussed) and the prior 
knowledge of the student (Kalyuga et al., 2003; Kirschner, Paas, Kirschner, & Janssen, 2011; Moreno, 
2004). Some evidence suggests that the implementation of instructional design principles may be most 
effective for students with low levels of prior knowledge (Mayer, 2001). This is because the less prior 
knowledge a student has, the more intrinsic cognitive load the task imposes (Kalyuga, 2011; Leahy, 
Hanham, & Sweller, 2015). An increase in intrinsic cognitive load could consume working memory 
capacity, leaving little capacity for handling extrinsic cognitive load (Paas, Renkl, & Sweller, 2003). 
For these reasons, if a task is high in intrinsic cognitive load, reductions in extrinsic load should yield 
more benefits compared to tasks low in intrinsic load (Seufert, Jänen, & Brünken, 2007). Therefore, the 
reduction of extraneous processing and extrinsic cognitive load through the application of the instruc-
tional design principles may foster greater learning in students with low levels of prior knowledge than 
in students with high levels of prior knowledge (e.g., Magner, Schwonke, Aleven, Popescu & Renkl, 
2014; see Moreno & Mayer, 2007; Schnotz, 2002, for discussions). It is also possible that efforts to 
lower cognitive load may actually make learning more difficult for students with higher levels of prior 
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knowledge (Kalyuga, 2007). This phenomenon, known as the expertise reversal effect, arises because 
the information added to guide processing is redundant with what students with high prior knowledge 
already know, thereby increasing the cognitive load of the lesson (Sweller et al., 2011).

Much of the previous work on prior knowledge and instructional design techniques has involved sepa-
rating students into two groups: high and low (e.g., Mayer & Gallini, 1990; Mayer, Steinhoff, Bower, & 
Mars, 1995). However, recent research findings have indicated that separating students into three groups 
allows a more nuanced understanding of interactions between instructional design techniques and prior 
knowledge (Magner et al., 2014).

THE CURRENT STUDY

The purpose of the current study is to use eye-tracking methodology to examine the effects of revisions 
to visuals based on instructional design principles (specifically, the signaling, contiguity, and coherence 
principles) on the process of reading a mathematics lesson and on subsequent learning from that lesson. 
Eye tracking was the methodology of choice because the data from eye tracking can be used to infer the 
moment-by-moment processes involved in reading (Just & Carpenter, 1980; Rayner, 1998). Because of the 
spatial precision of eye tracking, the data afford valuable insight into the processing of different representa-
tions in written lessons with visual representations (e.g., Mason et al., 2013; Rau, Michaelis, & Fay, 2015; 
Scheiter & Eitel, 2015; see Hyönä, 2010 for review). In other words, eye tracking allows an examination 
of how visuals and text are processed.

Specific to this study, we were interested in how eye tracking could yield information about the cogni-
tive load and amount of cognitive processing involved in viewing the text and visuals. To assess cognitive 
load, average fixation length (i.e., pause in eye movement) was used. Average fixation length is thought to 
be a positive indicator of cognitive load (i.e., as cognitive load increases, average fixation length increases; 
Ozcelik et al. 2010; van Gog et al., 2009; Paas, 2009; van Gog & Scheiter, 2010). This is because cognitive 
load is essentially the mental effort involved in working memory, and fixations typically increase as more 
effort is exerted while viewing the fixated material (van Gog et al., 2009). Thus, average fixation length 
can be used to infer the effectiveness of the revisions in reducing cognitive load. In contrast, the amount 
of cognitive processing is how much time one spends thinking about something. Given the eye-mind as-
sumption (Just & Carpenter, 1980), the time spent viewing a representation, calculated by summing the 
fixation durations on that representation, is considered to be the amount of cognitive processing involved 
with the representation (e.g., Graesser, Lu, Olde, Cooper-Pye, & Whitten, 2005; Rayner, 1998; Ozcelik et 
al., 2009). In other words, the amount of time a student viewed a section of a lesson provides a measure of 
how much that student cognitively processed that section (e.g., Kaakinen, Olkoniemi, Kinnari, & Hyönä, 
2014). The amount of cognitive processing differs from cognitive load because cognitive processing is the 
overall time spent on a representation whereas cognitive load is the mental effort in working memory at a 
given moment (Ozcelik et al., 2010).

We address three main research questions. First, what were the effects of the revisions on cognitive load 
while reading the lesson? Because the revisions were designed to reduce cognitive load, average fixation 
length was expected to be shorter for the revised lesson than the original lesson (e.g., Amadieu et al., 2009). 
In this way, average fixation length can be used to evaluate the effectiveness of the revisions. Further, this 
finding might be strongest for students with low levels of prior knowledge, compared to students with higher 
levels of prior knowledge (Mayer, 2001). Moreover, because of the expertise reversal effect (Kalyuga, 



200

How Revisions to Mathematical Visuals Affect Cognition
﻿

2007), it is possible that the revisions would increase the cognitive load for students with middle and high 
levels of prior knowledge. It should be noted that some previous eye-tracking work examining a single 
instructional design principle has not revealed effects on average fixation length (Altan & Cagiltay, 2015; 
de Koning et al., 2010; Ozcelik et al., 2010). However, because our study applies multiple principles, the 
cumulative effects of these principles may be powerful enough to reduce average fixation length, at least 
for students with low levels of prior knowledge.

Second, what were the effects of the revisions on the amount of cognitive processing for different 
representations? These amounts can be assessed via total fixation time, which is the summed duration 
of all fixations within an area of interest (e.g., a visual or a section of text;). With this measure, it can be 
determined whether students differed in how much they processed the original and revised visuals. Given 
that the revised visuals provide additional guidance for processing, students may need to engage in less 
cognitive processing with them, thereby needing less total fixation time compared to the original visuals. 
In addition, it can be determined whether students processed the text in the lesson differently depending on 
the type of visuals used. Students with revised visuals may have less total fixation time on the text compared 
to students with original visuals because students with revised visuals may need less help from the text to 
understand the mathematical content. Finally, to assess the amount of cognitive processing of the entire 
lesson, we examined the total fixation duration for the entire lesson. It was expected that students with the 
revised lesson would spend less time with the lesson than students with the original lesson.

As with cognitive load, the effects of the revisions on the amount of cognitive processing would likely be 
most pronounced for students with low levels of prior knowledge. However, prior knowledge is especially 
important to consider given that the amount of cognitive processing of visuals is negatively associated with 
prior knowledge (i.e., the less prior knowledge a student has, the longer the visual is viewed; Hegarty & 
Just, 1993; Schwonke et al., 2009). This may be because students with high prior knowledge primarily use 
the visuals to confirm what they already know, rather than to learn from them (Rasch & Schnotz, 2009).

Third, did the revisions of the visuals affect students’ learning from the lesson? The instructional design 
principles were intended to reduce cognitive load and extraneous processing so that students could focus 
their limited cognitive resources on the content presented in the lesson (Mayer, 2009; Sweller et al., 2011). 
For these reasons, students may perform better on a post-lesson test after reading the revised lesson than 
the original lesson. However, the learning benefits from the revisions may be strongest for students with 
low levels of prior knowledge (Mayer, 2001).

One benefit of eye tracking is that it can reveal whether the revisions affected how students viewed the 
lesson, even if there is no observable effect on learning. For example, previous eye-tracking findings have 
revealed that replacing text with narration in a multimedia presentation reduced average fixation lengths 
when viewing the presentation, but did not affect learning from the presentation (Liu, Lai, & Chuang, 
2011). This is because eye-tracking measures are more sensitive than many other measures. Furthermore, 
the amount of cognitive processing of the representations in the lesson could be used to examine if students 
compensate for the lack of guidance in the original visuals by spending more time on different representa-
tions in the lesson as well on the lesson overall. Finally, if the revisions had no effect on eye movements or 
learning, it can be assumed that the application of the instructional design principles was ineffective and 
other techniques should be explored (e.g., Lowe & Boucheix, 2011).

These questions were addressed using a lesson about how to graph independent and dependent vari-
ables on a coordinate grid. In addition to being visually rich, this topic is of particular interest because of 
its importance in scientific literacy (Padilla, McKenzie, & Shaw, 1986) and algebraic reasoning (Nathan 
& Kim, 2007).
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METHOD

Participants

Participants were 62 (26 female, 36 male) middle-school students entering sixth or seventh grade (ages 
10 – 12 years; M = 11.12 years, SD = .33 years). Because of apparatus malfunction, eye-tracking data 
were collected for only 57 participants. However, all 62 participants read the lesson in the same manner 
and completed the self-report of prior knowledge and the post-lesson test (see Measures). Participants 
were compensated with a $15 gift card for an online retailer.

Apparatus

An EyeLink 1000 Desk-Mounted System, manufactured by SR Research Ltd. (Toronto, Ontario, Canada), 
was used to collect eye movement data. This eye tracker uses an infra-red video camera for monocular 
tracking, and the video camera was focused on the participant’s pupil. The video camera sampled real-
time fixations at a 1000 Hz sampling rate. Head position was stabilized with a chin and forehead rest 70 
cm from the computer monitor displaying the lesson. Pupil diameter was recorded with centroid pupil 
tracking.

Materials

The lesson, derived from CMP2 (Lappan et al., 2006), covered the skills necessary to record data with 
independent and dependent variables in a table and then construct a graph from those data. The skills 
were presented in the context of a story in which a person was planning a long-distance bike trip and 
needed to know her biking pace. The original lesson included a variety of visuals including a map, 
graphs, tables, and math-irrelevant pictures.

The lesson consisted of nine pages, with identical text in both the original and revised conditions but 
changes made to the visuals on eight of the revised pages. The first page was the same for both groups, 
with text that reiterated the instructions for reading the lesson (e.g., read at your own pace, please sit 
still). The introduction to the lesson discussed the person’s plans for her trip and included a map that had 
decorative features in the original materials, but, based on the coherence principle, did not have decorative 
features in the revised materials. In the remaining 7 pages, there were 3 pages in which the signaling and 
contiguity principles were applied to the revised visuals. Specifically, color coding, labels, and call-out 
boxes were added to the math-relevant visuals of tables and graphs (see Figure 1). There were 2 pages 
in which the math-relevant visuals were the same in the original and revised materials, but the original 
materials also contained math-irrelevant visuals and, following the coherence principle, these were de-
leted in the revised materials (see Figure 2). Finally there were 2 pages in which the original materials 
contained a math-irrelevant visual and, following the signaling, contiguity, and coherence principles, 
the revised materials contained a math-relevant visual with labeling and call-out boxes (see Figure 3).

As one would likely see in CMP2, the arrangement of the visuals in relationship to the text varied on 
each page. On some pages the visuals were below the text and on other pages the visuals were beside 
the text. This created more variability in the design of the materials across the lesson than is typically 
seen in eye-tracking experiments of lessons with visuals (e.g., Scheiter & Eitel, 2015). However, the 



202

How Revisions to Mathematical Visuals Affect Cognition
﻿

Figure 1. Example of revisions based on the signaling and contiguity principles

Figure 2. Example of revisions based on the coherence principle
Image from Shutterstock©, used with permission.

Figure 3. Example of revisions based on the coherence, signaling, and contiguity principles
Image in original lesson from Getty Images©, used with permission.
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aim was to make materials as authentic as possible to enhance the ecological validity of the results (see 
Holsanova, 2014).

Procedure

Participants took part individually, and the experimenter calibrated the eye tracker for each participant. 
Participants then read the lesson one page at a time, at their own pace, while their eye movements were 
recorded. Prior to reading each page, participants gazed at a single dot on the screen to correct for drifts 
in eye gaze that may have occurred since calibration. After reading the lesson, participants reported their 
familiarity with the math content and then completed the post-lesson test.

Measures

Similar to Mautone and Mayer (2001), prior knowledge was assessed through self-reports of familiarity 
with the mathematical content of the lesson on a Likert scale from 1-5 (M = 3.74, SD = 1.20). Based on 
these responses, participants were divided into three prior knowledge groups: low (responses between 
1-3; n = 22), middle (response of 4; n = 16), and high (response of 5; n = 19). Self-reports were used 
instead of pretests to prevent pretest sensitization, in which treatment effects may be inflated by prim-
ing knowledge with assessments prior to the lesson (Willson & Putnam, 1982; Willson & Kim, 2010).

The post-lesson test consisted of three parts. The first part directly assessed individual skills covered 
in the lesson, such as reading data values from a table and graph, identifying independent and dependent 
variables, identifying appropriately scaled axes, using appropriate axis units and scales, and locating the 
x- and y-axes. Answers on the first part were scored for accuracy (0 for incorrect answers; 1 for correct 
answers). The second part asked participants to construct a graph based on a table of data points. Stu-
dents’ graph construction was scored out of 5 points based on variable and axis placement, consistent 
use of scale on each axis, variable labels, and plotting points. The third part assessed preparation for 
future learning (see Bransford & Schwartz, 1999) by presenting a short, novel lesson that students read 
and answered questions about. The preparation for future learning questions asked students to take their 
reasoning a step further and to match a graph’s pattern to a description of a data scenario. As with the 
first part, accuracy for question answers was dichotomously scored. A total score was determined by 
summing scores on all three parts (maximum of 27 points).

RESULTS

For all analyses, the Type I error rate was set at α = .05, with Bonferroni corrections for multiple com-
parisons.

What Were the Effects of the Revisions on Cognitive 
Load While Reading the Lesson?

We first examined the cognitive load incurred while reading the text, as indicated by average fixation 
length. Eye-tracking measures were extracted from text at the sentence level. Following Blozis and 
Traxler (2007), linear mixed-model analyses with condition and prior knowledge group as fixed factors, 
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participant as a random factor, sentence as a repeated effect, and average fixation length as the dependent 
variable were conducted (see Schonberg, Sandhofer, Tsang, & Johnson, 2014, for similar analyses). All 
lesson text after the first page of instructions was used in these analyses.

As predicted, there was an interaction between condition and prior knowledge group, F(2, 51) = 
47.27, p < .001 (see Figure 4). Participants in the low prior knowledge group had longer average fixa-
tion lengths on the text in the original condition than the revised condition, F(1, 21) = 45.42, p < .001. 
In contrast, participants in the middle prior knowledge group had shorter average fixation lengths on 
the text in the original condition than the revised condition, F(1, 15) = 71.15, p < .001. Participants 
in the high prior knowledge group also had shorter average fixation lengths on the text in the original 
condition than the revised condition, but this difference did not reach significance, F(1, 18) = 3.613, p 
= .06. These findings indicate that the cognitive load involved when reading the text varies as a function 
of both prior knowledge and revisions to the visuals.

In addition to the significant interaction, there was also a main effect for condition, F(1, 51) = 7.75, 
p = .01. Average fixation length was shorter overall while viewing text in the original condition than the 
revised condition, because participants in both the middle and high prior knowledge groups had shorter 
average fixation lengths in the original condition. There was also a main effect for prior knowledge, F(2, 
51) = 52.41 p = .01, with participants in the high prior knowledge group having shorter average fixa-
tion lengths than both participants in the middle prior knowledge group, p = .001, and participants in 
the low prior knowledge group, p < .001. In addition, participants in the middle prior knowledge group 
had shorter average fixation lengths than did participants in the low prior knowledge group, p < .001. 
Overall, the decrease in average fixation duration with higher levels of prior knowledge indicated that 
cognitive load was lower for students with more knowledge. This relationship between prior knowledge 
and cognitive load is consistent with previous findings (Kalyuga, 2011) and validates the use of self-
reports for assessing prior knowledge.

Figure 4. Average fixation length (means and +/1 SE) by condition and prior knowledge group while 
reading the lesson text
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We next examined the effects of the revisions on the cognitive load incurred while processing math-
relevant visuals (i.e., graphs and tables). To do this, the average fixation lengths on the math-relevant 
visuals that were present in both the original and revised lessons were examined (see Figure 1 for an 
example of math-relevant visuals). The same analyses as with text were conducted, except the dependent 
variable was the average fixation length on math-relevant visuals. Similar to the text analyses, there was 
an interaction of condition and prior knowledge on average fixation length on the math-relevant visuals, 
F(2, 51) = 8.58, p < .001 (see Figure 5). For participants in the low prior knowledge group, the average 
fixation length for math-relevant visuals was longer in the original condition than in the revised condi-
tion F(1, 21) = 5.53, p = .02. In contrast, for the middle prior knowledge group, the average fixation 
length for math-relevant visuals was shorter in the original condition than in the revised condition, F(1, 
15) = 9.77, p = .003. Finally, for the high prior knowledge group, the average fixation length for math-
relevant visuals was longer in the original condition than in the revised condition, F(1, 18) = 9.29, p = 
.003. There was no overall main effect of condition, and there was a marginally significant main effect 
of prior knowledge, F(2, 51) = 2.80, p = .06, with average fixation length generally being shorter with 
higher levels of prior knowledge (Figure 5).

What Were the Effects of the Revisions on the Amount of Cognitive 
Processing for Different Representations in the Lesson?

The effects of the revisions to the visuals on the amount of cognitive processing of the text and the visu-
als were examined. Total fixation duration (i.e., the sum of all fixations on a region of interest) was the 
measure of amount of cognitive processing. Prior to analyses, total fixation time was logarithmically 
transformed to improve normality (e.g., Mason, Tornatora, & Pluchino, 2015). Analyses were similar 
to those for cognitive load except the dependent variable was the total fixation duration on the region 
of interest.

Figure 5. Average fixation length (means and +/1 SE) by condition and prior knowledge group while 
viewing original or revised math-relevant visuals
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We also examined the effects of the revisions on the cognitive processing of the text. Results are 
shown in Figure 6 (actual, non-transformed total fixation time is presented in the graphs to provide the 
reader with meaningful descriptive statistics). There was an interaction between condition and prior 
knowledge group for total fixation duration on the text, F(2, 51) = 23.63, p < .001. Participants in the 
low prior knowledge group had greater total fixation duration on the text in the original conditions than 
the revised condition, F(1, 21) = 74.88, p < .001. In contrast, participants in the middle prior knowledge 
group had less total fixation duration on the text in the original condition than the revised condition, 
F(1, 15) = 9.82, p = .002. There was no effect of condition on total fixation duration on the text for 
participants in the high prior knowledge group.

In addition to this interaction, there was also a main effect of condition, F(1, 51) = 7.58, p = .01, with 
greater total fixation duration on the text in the original condition than the revised condition, which is 
likely due to the reading behavior of participants in the low prior knowledge group. In addition, there 
was a main effect of prior knowledge, F(2, 51) = 49.02, p < .001. Participants in the low prior knowl-
edge group had greater total fixation duration on the text than did both participants in the middle prior 
knowledge group, p < .001, and participants in the high prior knowledge group, p < .001.

We also examined the effects of the revisions on the cognitive processing of math-relevant visuals. 
Results are shown in Figure 7.

There was an interaction between condition and prior knowledge group for total fixation duration on 
the math-relevant visuals, F(2, 51) = 6.57, p = .002 (see Figure 7). Participants in the low prior knowl-
edge group had longer total fixation duration on the math-relevant visuals in the original condition than 
in the revised condition, F(1, 21) = 6.43, p = .01. In contrast, participants in the middle prior knowledge 
group had shorter total fixation duration on the math-relevant visuals in the revised condition than in the 
original condition, F(1, 15) = 9.74, p = .003. There was no effect of condition on total fixation duration 
on the math-relevant visuals for participants in the high prior knowledge group. Therefore, revisions 
appeared to reduce cognitive processing for students in the low prior knowledge group, but increased 
cognitive processing for students in the middle prior knowledge group (explanations for these findings 

Figure 6. Total fixation duration (means and +/1 SE) by condition and prior knowledge group while 
reading the lesson text
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will be considered in the discussion). There was no main effect of condition, but there was a main effect 
of prior knowledge group, F(2, 51) = 9.70, p < .001. Participants in the low prior knowledge group had 
longer total fixation duration on math-relevant visuals than did either participants in the middle prior 
knowledge group, p = .002, or the high prior knowledge group, p < .001.

Finally, the amount of cognitive processing of the entire lesson was examined (termed time spent 
with lesson to distinguish from previous analyses). An ANOVA with condition and prior knowledge 
group as independent variables and the total number of seconds spent with the lesson as the dependent 
variable was conducted. Results are shown in Figure 8. Condition did not affect the time spent with the 
lesson, F(1, 51) = .36, p = .55 and there was a marginal effect of prior knowledge group, F(2, 51) = 
2.91, p = .06, with time with the lesson generally being less with more prior knowledge. There was no 
reliable interaction between condition and prior knowledge group, F(2, 51) = 2.22, p = .12, although, 
based on the means, the revised lesson appeared to be read more quickly than the original lesson for the 
low prior knowledge group.

Did the Revisions Affect Learning?

We examined the effects of the revisions on learning from the lesson. An ANOVA with condition and 
prior knowledge group as independent variables and score on the post-lesson test as the dependent vari-
able was conducted. For these analyses, data from all participants, not just those for whom eye-tracking 
data were recorded, are reported (N = 62). As seen in Figure 9, condition did not affect post-lesson test 
scores, F(1, 56) = .00, p = .96. However, level of prior knowledge did predict post-lesson test scores, 
F(2, 56) = 10.19, p < .001; pairwise comparisons revealed that participants in the low prior knowledge 
group had lower post-lesson test performance than did participants in the high prior knowledge group, 
p < .001, Cohen’s d = 1.30, providing validity for use of the self-report as a prior knowledge measure. 
There was no interaction between condition and level of prior knowledge, F(2, 56) = .14, p = .87.

Figure 7. Total fixation duration (means and +/1 SE) by condition and prior knowledge group while 
viewing original or revised math-relevant visuals
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DISCUSSION

This study examined the effects of revisions of mathematical lesson materials based on instructional 
design principles on measures of cognitive load, amount of cognitive processing, and learning. The find-
ings indicated that the revisions affected cognitive load and amount of cognitive processing for visuals 
and text, but that the effect of the revisions varied with students’ level of prior knowledge. No effects of 
the revisions were found for amount of processing of the lesson as a whole or learning from the lesson.

Figure 8. Time spent with lesson (means and +/1 SE) by condition and prior knowledge group

Figure 9. Post-lesson scores (means and +/1 SE) by condition and prior knowledge group
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Cognitive Load

It was expected that the revisions would reduce cognitive load, as indicated by average fixation length, 
especially for students with low levels of prior knowledge. Indeed, the revisions appeared to reduce 
cognitive load while reading the text for students with low levels of prior knowledge. In addition, the 
revisions appeared to reduce cognitive load for viewing the revised visuals for students in the low prior 
knowledge group and high prior knowledge group. These findings support the idea that instructional 
design principles can reduce the cognitive load of reading text and attending to math-relevant visuals, 
at least for students with low levels of prior knowledge.

However, the revisions increased the cognitive load of reading the lesson text and viewing the math-
relevant visuals for students with moderate prior knowledge. These findings are somewhat consistent 
with the expertise reversal effect, a phenomenon in which guidance intended to assist learning actually 
makes learning more difficult for students with higher levels of prior knowledge (Kalyuga, 2007). This 
is because the guidance is unnecessary information for someone who is proficient with the material. 
Specifically, the labeling of revised visuals may have been redundant information that required extra 
processing and thus increased cognitive load for the students with more knowledge (Kalyuga, Ayres, 
& Sweller, 2003). For students in the high prior knowledge group, this trend was reversed when these 
students were viewing the math-relevant visuals. One speculative explanation, based on previous work 
on how students with high levels of prior knowledge use visuals (Rasch & Schnotz, 2009) is that these 
students had such proficiency with the lesson that they were able to use the visuals to help remind them 
of the material they already knew. However, it is worth noting that this pattern, in which students with 
the highest level of prior knowledge have a reversal of the expertise reversal effect, has not been previ-
ously noted in the literature; therefore, it should be interpreted with caution.

Cognitive Processing

It was expected that amount of cognitive processing of the text and visuals, as indicated by total fixation 
duration, would be less for the revised lesson than the original, at least for students with low levels of prior 
knowledge. This is because, based on the cognitive theory of multimedia learning, the revisions should 
have reduced extraneous processing (Mayer, 2009). Indeed, the amount of cognitive processing of the 
lesson text and math-relevant visuals was greater in the original condition than the revised condition for 
students in the low prior knowledge group. This could be because students who saw the original visuals 
compensated for less well-designed visuals by spending more time processing the lesson information 
compared to students who saw revised visuals. For students in the middle prior knowledge group, a dif-
ferent pattern of results was noted: The amount of cognitive processing of lesson text and math-relevant 
visuals was greater in the revised condition than in the original condition. As with the cognitive load 
findings, this could be due to the revisions adding extra information. Finally, there was no difference 
in the amount of cognitive processing of the lesson text and math-relevant visuals between conditions 
for students in the high prior knowledge group (Kalyuga, 2007). It is possible that this group had such 
proficiency with the material that their overall processing was not affected by the revisions. Another pos-
sibility is related to the finding that, consistent with previous findings (Hegarty & Just, 1993; Schwonke 
et al., 2009), students in the high prior knowledge group processed the visuals less than did students in 
the low and middle prior knowledge groups. It could be that students in the high prior knowledge group 
did not view the visuals long enough for the revisions to have an effect.
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Learning

The effects of the revisions on learning were examined. Unlike previous work examining these principles 
in isolation with science lessons (Mayer, 2009), the revised materials did not promote greater learning 
than the original materials. Although the eye-tracking findings indicated an effect on cognitive load, 
this effect was insufficient to influence learning outcomes. However, information from the eye-tracking 
measures of amount of cognitive processing may explain the null effect on learning. Students in the low 
prior knowledge group engaged with the visuals and text in the original lesson more than with those in 
the revised lesson. It is possible that this additional processing compensated for the less well-designed 
visuals in the original lesson, to help students effectively learn from the original lesson. Although, accord-
ing to the cognitive theory of multimedia learning, this additional processing would likely be extraneous 
and lead to less learning (Mayer, 2009), it appears that at least some of this additional processing was 
helpful, or at the very least not harmful, for learning. It is possible that the revisions would have yielded 
a benefit for learning for the students in the low prior knowledge group if there had been time-limited 
presentation of the materials (e.g., Amelsvoort, van der Meij, Anjewierden, & van der Meij, 2012). Such 
presentation may enhance the potential benefits of instructional design principles because the limited 
time frame may increase the need for the guidance provided by the labeling and color coding in the 
revised visuals, at least for students with low levels of prior knowledge.

It is also possible that the visuals served a different role in this study than in previous studies. The 
visuals in previous studies typically represented a scientific phenomenon described by the text (e.g., how 
lightning is formed; Mayer, 2009). The nature of this study’s lesson content (i.e., constructing a graph) 
naturally prompted the integration of text and visual information. If the verbal representation provides 
instruction on how to construct the other representations (e.g., tables and graphs), as this lesson did, 
students may need less guidance through labels and color coding to connect the representations.

Implications for Curriculum Development

In this study, a “less is more” approach was embraced when revising the visuals in an authentic lesson 
(Clark & Elen, 2006). That is, three principles (signaling, contiguity, and coherence) were applied to 
reduce extraneous processing and cognitive load wherever possible (Mayer, 2009; Sweller et al., 2011). 
However, the findings do not support the effectiveness of the “less is more” approach in improving 
student learning. One reason may be that the potential benefits of increasing processing in a useful way 
(i.e., generative processing) were not considered. It is possible that a “focused more is more” approach, in 
which students are prompted to engage in generative processing and materials are designed to minimize 
extraneous processing, would be more beneficial for students, (Mayer, 2014b).

In this study, we applied a combination of three instructional design principles that shared common 
theoretical foundations in the cognitive theory of multimedia learning and cognitive load theory (Mayer, 
2009; Sweller et al., 2011). This is a novel approach to instructional design, given that these principles 
have generally been examined in isolation (e.g., Florax & Ploetzner, 2010; Johnson & Mayer, 2012; 
Magner et al., 2014; Mason et al., 2013; Ozcelik et al., 2009, 2010; Scheiter & Eitel, 2015). However, 
one consequence of this approach is that it is uncertain how the principles individually related to the 
findings, but it also suggests that combining principles may not result in additive effects. In light of 
our findings, it may be premature to apply these principles to curriculum development on a large scale.
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Theoretical Implications

The findings from this study provide limited support for the cognitive theory of multimedia learning 
and cognitive load theory. According to the cognitive theory of multimedia learning, students learn 
more if instructional materials are designed to reduce extraneous processing (Mayer, 2009). According 
to cognitive load theory, limited working memory capacity is best used if cognitive load unrelated to 
learning (i.e., extrinsic cognitive load) is minimized (Sweller et al., 2011). The applications of the three 
instructional design principles to the revised visuals were all intended to reduce extraneous processing 
and cognitive load. The revisions appeared to be effective in reducing cognitive processing and cognitive 
load for students in the low prior knowledge group. However, inconsistent with these theories and previous 
findings (e.g., Florax & Ploetzner, 2010; Holsanova et al., 2009; Johnson & Mayer, 2012; Mayer et al., 
1995), the revisions did not affect student learning although they did affect cognition (similar to Liu et 
al., 2011). As previously discussed, it is possible that students in the low prior knowledge group engaged 
in compensatory cognitive processing in an effort to learn from the less well-designed, original visuals.

Limitations and Future Directions

This study applied eye-tracking methodology to understand the effects of multiple instructional design 
principles on cognitive load and the amount of cognitive processing of an authentic mathematics lesson. 
Unfortunately, because of the labor-intensive nature of eye-tracking data collection and the curvilinear 
patterns with prior knowledge, there was insufficient power to directly examine relationships between 
the eye-tracking measures reported and learning. Future work could better elucidate our understanding 
of how different representations are processed in relation to learning. Such work could detect relation-
ships by targeting a specific prior knowledge group—individuals with low prior knowledge may be of 
particular importance given that instructional design principles appear to have the most influence for 
such individuals (Mayer, 2001). Such work might also consider a single instructional principle at a time. 
In addition, in future studies, less authentic, but more controlled placement of visuals may allow for a 
more fine-grained understanding of relations between eye-tracking measures and learning. The use of 
controlled placement of visuals would also be conducive to eye-tracking measures not reported in this 
chapter, such as transitions between visuals and text.

CONCLUSION

In this study, visuals were revised in a mathematics lesson based on instructional design principles 
to improve the integration of text and visual information, and the effects on cognitive load, cognitive 
processing, and learning were examined. Eye-tracking methodology was used to examine the effects of 
the revisions on viewing the text and the math-relevant visuals. Consistent with the cognitive theory of 
multimedia learning (Mayer, 2014a) and cognitive load theory (Sweller et al., 2011), the revisions ap-
peared to reduce cognitive processing and cognitive load for students with low levels of prior knowledge, 
though they did not affect learning.
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Taken together, the findings emphasize the complexity of applying instructional design principles 
to authentic lessons. Although many instructional design principles are framed as “one size fits all,” the 
findings indicate that their effects on student cognition may depend on students’ level of prior knowledge. 
This study illuminates the usefulness of eye-tracking data in understanding cognitive load and cognitive 
processing among different groups of students learning from multiple representations.
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KEY TERMS AND DEFINITIONS

Cognitive Load: The amount of effort one exerts while processing information in working memory 
(Sweller et al., 2011).

Cognitive Processing: The amount of thinking in which one engages for a particular task or topic.
Coherence Principle: Learning is facilitated when interesting, but irrelevant information is removed 

(Mayer, 2009).
Contiguity Principle: Learning is facilitated when materials have relevant information in different 

representations in close physical proximity (Mayer, 2009).
Eye-Mind Assumption: The concept that the eye fixates on what the mind is processing (Just & 

Carpenter, 1980).
Instructional Design Principles: Approaches for the arrangement of learning materials based on theo-

retical understanding of human cognition. Also called cognitive principles or evidence-based principles.
Signaling Principle: Learning is facilitated when materials have cues to important information 

(Mayer, 2009).


